
I’m in one of the world’s volcanic hotspots, northeast Iceland, near the Krafla volcano.
A short distance away I can see the rim of the volcano’s crater lake, while to the south steam vents and mud pools bubble away.
Krafla has erupted around 30 times in the last 1,000 years, and most recently in the mid-1980s.
Bjorn Guðmundsson leads me to a grassy hillside. He is running a team of international scientists who plan to drill into Krafla’s magma.
“We’re standing on the spot where we are going to drill,” he says.
The Krafla Magma Testbed (KMT) intends to advance the understanding of how magma, or molten rock, behaves underground.
That knowledge could help scientists forecast the risk of eruptions and push geothermal energy to new frontiers, by tapping into an extremely hot and potentially limitless source of volcano power.
Starting in 2027 the KMT team will begin drilling the first of two boreholes to create a unique underground magma observatory, around 2.1km (1.3 miles) under the ground.
“It’s like our moonshot. It’s going to transform a lot of things,” says Yan Lavallée, a professor of magmatic petrology and volcanology at the Ludwigs-Maximillian University in Munich, and who heads KMT’s science committee.
Volcanic activity is usually monitored by tools like seismometers. But unlike lava on the surface, we don’t know very much about the magma below ground, explains Prof Lavallée.
“We’d like to instrument the magma so we can really listen to the pulse of the earth,” he adds.
Pressure and temperature sensors will be placed into the molten rock. “These are the two key parameters we need to probe, to be able to tell ahead of time what’s happening to the magma,” he says.
Around the world an estimated 800 million people live within 100km of hazardous active volcanoes. The researchers hope their work can help save lives and money.
Iceland has 33 active volcano systems, and sits on the rift where the Eurasian and North American tectonic plates pull apart.
Most recently, a wave of eight eruptions in the Reykanes peninsula has damaged infrastructure and upended lives in the community of Grindavik.
Mr Guðmundsson also points to Eyjafjallajökull, which caused havoc in 2010 when an ash cloud caused over 100,000 flight cancellations, costing £3bn ($3.95bn).
“If we’d been better able to predict that eruption, it could have saved a lot of money,” he says.